

Biomass Pyrolysis Processes: Review of Scope, Control and Variability

Peter A Brownsort

December 2009

UKBRC Working Paper 5:

Biomass Pyrolysis Processes: Review of Scope, Control and Variability

Peter A Brownsort

December 2009

This review is based on work carried out for a MSc dissertation under the supervision of Dr Ondřej Mašek, UKBRC, during the summer of 2009.

Please note that UK Biochar Research Centre working papers are "work in progress". Whilst they are commented on by leading researchers, they have not been subject to a full peer review. The accuracy of this work and the conclusions reached are the responsibility of the author(s) alone and not the UK Biochar Research Centre.

www.biochar.org.uk

Abstract

This review focuses on biomass pyrolysis processes for use in biochar systems. Objectives are to describe the scope, range of control and degree of variability of such processes.

Slow, intermediate and fast pyrolysis processes are reviewed. Product yield distributions change depending on feedstock composition and preparation, control of temperature and material flows. These allow some control over distribution of main products – char, liquids and gases. Typical mass yield ranges for slow pyrolysis are char 25-35%, liquid 20-50%, gas 20-50%; for intermediate pyrolysis, char 30-40%, liquid 35-45%, gas 20-30%; and for fast pyrolysis, char 10-25%, liquid 50-70%, gas 10-30%. Variability associated with char yield is estimated at \pm 5% (relative). Char yield should be considered an underlying, but minor source of variability in pyrolysis biochar systems.

Table of Contents

1. Introduction	. 1
2. Biomass Pyrolysis Processes	2
2.1. Introduction	2
2.1.1. Definition	2
2.1.2. Product Terminology	2
2.1.3. Historical Context	3
2.2. Pyrolysis Process Types	3
2.2.1. Fast Pyrolysis	3
2.2.2. Slow Pyrolysis	3
2.2.3. Other Technologies	. 4
2.3. Effects of Feedstock and Main Process Parameters	5
2.3.1. Feedstock Composition	5
2.3.2. Feedstock Preparation	6
2.3.3. Temperature Profile Control	6
2.3.4. Gas Environment	. 7
2.4. Carbon and Energy Flows on Pyrolysis	9
3. Biomass Pyrolysis: Review of Process Scope 1	11
3.1. Review Methodology 1	11
3.2. Observations	11
3.3. Pyrolysis Process Scope 1	11
3.4. Example Pyrolysis Data	13
3.5. Pyrolysis Process Scope: Conclusions 1	13
4. Variability in Pyrolysis Processes 1	15
4.1. Introduction 1	15
4.2. Sources of Variability 1	15
4.3. Evidence and Magnitude of Variability	15
4.4. Sensitivity of Biochar System Benefits to Yield Variability	17
4.4.1. Case Study 1	18
4.4.2. Case Study 2	18
4.4.3. Case Study 3 1	19
4.4.4. Case Study 4	20
4.5. Significance of Yield Variability	21
5. Conclusions	22
Reterences and Appendices	23

List of Figures

Figure 1. Simplified Representation of Biomass Pyrolysis	. 5
Figure 2. Product Yield Trends with Pyrolysis Temperature	. 8
Figure 3. Scheme Showing Main Carbon Flows Associated with Biomass Pyrolysis	10
Figure 4. Pictorial Representation of Pyrolysis Process Scope	12
Figure 5. Okimori Case Study: Sensitivity of Carbon Sequestered to Char Yield Variation	18
Figure 6. Ogawa Case Study (Forestry and Pulp Mill): Sensitivity of Carbon Sequestered to Char	
Yield Variation	19
Figure 7. Ogawa Case Study (Sawmill Waste): Sensitivity of Carbon Sequestered to Char Yield	
Variation	20
Figure 8. McCarl Case Study: Sensitivity of Financial Analysis to Char Yield Variation	21

List of Tables

Table 1. Scop	of Pyrolysis Process Control and Yield Ranges	12
Table 2. Sum	ary of Pyrolysis Data for Selected Feedstocks	14
Table 3. Sum	ary of Pyrolysis Yield Variability Data	16

1. Introduction

Pyrolysis biochar systems offer one of the few available options for carbon-negative technology in the short term. Pyrolysis converts organic matter into a carbon-rich solid, char, and volatile products by heating in the absence of oxygen. Char from biomass, biochar, when produced and incorporated into soils under certain conditions may provide a stable storage for carbon over a long time scale. Through pyrolysis biochar systems carbon dioxide may be removed from the atmosphere, assimilated firstly by plant growth then stored as a stable form of carbon in the soil rather than returning to the atmosphere through decomposition. In addition, the volatile products of pyrolysis, bio-oil and syngas, are considered as carbon-neutral, renewable fuels and can be used to offset fossil fuel consumption in electricity generation or other fuel uses thereby avoiding carbon dioxide emissions.

Estimates of the potential for carbon sequestration using biochar are limited but suggest that the total global scale could be large, possibly on the gigatonne scale, with one suggesting sequestration potential could exceed existing emissions from fossil fuels (Lehmann et al, 2006). Such global estimates are necessarily based on numerous assumptions and are open to criticism. It has been suggested that the efficiency of biochar systems will be strongly dependent on case-specific factors and that it is difficult to assess the overall potential without much further study (Fowles, 2007).

In two recent publications aiming to quantify potential benefits of specific biochar systems (Gaunt and Lehmann, 2008; McCarl et al, 2009) it is notable that the performance parameters of the pyrolysis processes themselves were not considered as variables for sensitivity analysis and essentially single sets of data for the pyrolysis processes have been used. This is a surprising limitation as the pyrolysis process performance is likely to be one of the key factors affecting the efficiency of a pyrolysis biochar system.

Following a general introduction to the main processes for biomass pyrolysis, the present review describes the breadth of scope of these processes in terms of the range of control of process parameters and how this affects outputs. The degree of unintentional process variability that may occur, and its significance, is also considered.

This review is based on work carried out for a MSc dissertation project (Brownsort, 2009) that also considered the influence of process parameters on benefits arising from biochar systems using a model study to compare examples of the main pyrolysis methods. This second aspect of the work will be published separately.

2. Biomass Pyrolysis Processes

2.1. Introduction

2.1.1. Definition

Pyrolysis is a thermo-chemical decomposition process in which organic material is converted into a carbon-rich solid and volatile matter by heating in the absence of oxygen (Demirbas and Arin, 2002). The solid, termed variously as char, biochar, charcoal or coke, is generally of high carbon content and may contain around half the total carbon of the original organic matter. The volatiles can be partly condensed to give a liquid fraction leaving a mixture of so-called 'non-condensable' gases. The process is represented simply in Equation 1. Each of the three product streams from pyrolysis, solid, liquid and gas, can have properties and uses that provide value from the process.

Equation 1. Simple Representation of Pyrolysis Process

2.1.2. Product Terminology

In this review the term char will be used generally to describe the solid product of pyrolysis, charcoal will be used for more traditional processes with wood as feedstock, biochar will be used where the intention is for the char to be used as a soil amendment. The term coke will not be used here being more generally used for coal-derived char. Char contains a varying carbon content, typically ranging 60-90% (Gaur and Reed, 1995). Some is 'fixed-carbon' in terms of its proximate analysis, some present in a remaining volatile portion; inorganic material in char is termed ash.

Liquid products from biomass pyrolysis are frequently termed bio-oil. However, this is a somewhat confusing term as the organic liquid product is generally hydrophilic containing many oxygenated compounds and is present, sometimes as a single aqueous phase, sometimes phase-separated, together with water produced in the pyrolysis reaction or remaining from the feedstock (Demirbas and Arin, 2002). In this report this is generally referred to simply as the liquid product and includes the water unless otherwise stated.

The gas product is termed synthesis gas, shortened to syngas. It is generally composed of carbon dioxide, carbon monoxide, methane, hydrogen and two-carbon hydrocarbons in varying proportions. In this report it is often referred to simply as the gas product.

2.1.3. Historical Context

Mankind has used pyrolysis and related processes for thousands of years. The earliest known example is the use of charcoal, produced as an unintentional residue from cooking fires, for cave drawings by Cro-Magnon man some 38,000 years ago (Antal and Grønli, 2003). In the Bronze Age intentionally produced charcoal was used for smelting metals and charcoal is still heavily used in metallurgy today. For thousands of years charcoal has been a preferred cooking fuel. Prior to the development of petrochemicals, pyrolysis, or 'wood distillation', was a source of many valuable organic compounds for industrial and medicinal uses; some high value liquid products, such as flavourings, are still produced by wood pyrolysis (Bridgwater and Peacocke, 2000). Pyrolysis and gasification processes have been used to extract liquid and gas products from coal since Victorian times and the technology for producing a synthetic crude oil from coal is well established. It is only more recently that biomass and organic wastes have become a focus as feeds for pyrolysis and related thermal treatment processes for energy recovery or bio-fuel production; the technologies are still relatively undeveloped (Mistry et al, 2008).

Char has also been used in agriculture for thousands of years. The fertile *terra preta* (dark earth) soils of the Amazonian region result from incorporation of char into otherwise poor soils. The resulting soils have long-lasting fertility that has been related to the stability of carbon in the soil (Lehmann et al, 2009). It is this observation coupled with the search for carbon sequestration techniques for climate change mitigation that has led to recent interest in pyrolysis-derived char, or biochar.

2.2. Pyrolysis Process Types

There are two main classes of process for biomass pyrolysis, introduced briefly below, plus a number of other related technologies. These sections are intended to give an overview of the technologies only; references to detailed published reviews are given.

2.2.1. Fast Pyrolysis

Fast pyrolysis is characterised by high heating rates and short vapour residence times. This generally requires a feedstock prepared as small particle sizes and a design that removes the vapours quickly from the presence of the hot solids. There are a number of different reactor configurations that can achieve this including ablative systems, fluidised beds, stirred or moving beds and vacuum pyrolysis systems. A moderate (in pyrolysis terms) temperature of around 500 ℃ is usually used. Development of fast pyrolysis progressed rapidly following the oil crises of the 1970's as a way of producing liquid fuel from an indigenous renewable resource, primarily wood, and the process is designed to give a high yield of bio-oil. There are several well-established commercial processes such as Ensyn Corporation's Rapid Thermal Process (Ensyn, 2009) or Dynamotive's Biotherm process (Dynamotive, 2009). The area has been extensively reviewed by Bridgwater (e.g. Bridgwater et al, 1999; Bridgwater and Peacocke, 2000).

2.2.2. Slow Pyrolysis

Slow pyrolysis can be divided into traditional charcoal making and more modern processes. It is characterised by slower heating rates, relatively long solid and vapour residence times and usually a lower temperature than fast pyrolysis, typically 400 °C. The target product is often the char, but this will always be accompanied by liquid and gas products although these are not always recovered.

Traditional processes, using pits, mounds or kilns, generally involve some direct combustion of the biomass, usually wood, as heat source in the kiln. Liquid and gas products are often not collected but escape as smoke with consequent environmental issues. Developments through the late 19th and early 20th centuries led to industrial scale processes using large retorts operated in batch (e.g. Riechert process, VMR ovens) or continuous modes (e.g. Lambiotte

process). These allow recovery of organic liquid products and recirculation of gases to provide process heat, either internally or externally (Antal and Grønli, 2003). Prior to the widespread availability of petrochemicals, such processes were used to generate important organic liquid products, in particular acetic acid and methanol. An excellent review of the science behind charcoal making is given by Antal and Grønli (2003).

Other developments in the later 20th century led to slow pyrolysis technologies of most interest for biochar production. These are generally based on a horizontal tubular kiln where the biomass is moved at a controlled rate through the kiln; these include agitated drum kilns, rotary kilns and screw pyrolysers (Brown, 2009). In several cases these have been adapted for biomass pyrolysis from original uses such as the coking of coal with production of 'towns gas' or the extraction of hydrocarbons from oil shale (e.g. Lurgi twin-screw pyrolyser, Henrich, 2007). Although some of these technologies have well-established commercial applications, there is as yet little commercial use with biomass in biochar production. Examples in this context include BEST Energies' process using an agitated drum kiln (BEST Energies, 2009; Downie et al, 2007) and Pro-Natura's Pyro-6 and Pyro-7 technology (Pro-Natura, 2008). No comprehensive review of modern slow pyrolysis techniques is available, however, Brown (2009) summarises them briefly together with other potential techniques for biochar production.

2.2.3. Other Technologies

This section covers a brief review of technologies other than slow and fast pyrolysis that may be used for thermal treatment of biomass and char production. Other than the first mentioned, they are not considered further in this report.

The term 'intermediate pyrolysis' has been used to describe biomass pyrolysis in a certain type of commercial screw-pyrolyser – the Haloclean reactor (Hornung et al, 2004; Hornung et al, 2006). This reactor was designed for waste disposal of electrical and electronic component residues by pyrolysis. When used for biomass it has performance similar to slow pyrolysis techniques, although somewhat quicker. Other than this application the term intermediate pyrolysis has been used occasionally but not consistently in the literature.

Very fast pyrolysis is sometimes referred to as 'flash pyrolysis' (Demirbas and Arin, 2002), usually in the context of laboratory studies involving rapid movement of substrate through a heated tube under gravity or in a gas flow. Higher temperatures and shorter residence times than fast pyrolysis are used, the main product distributions are similar to fast pyrolysis.

Flash carbonisation is a different process involving partial combustion of a packed bed of biomass in a pressurised reactor with a controlled air supply. A high yield of char and gas are reported with no liquid product formed under the reaction conditions (Antal et al, 2003). The technology is currently being commercialised by Carbon Diversion Incorporated (CDI, 2009).

Gasification is an alternative thermo-chemical conversion technology suitable for treatment of biomass or other organic matter including municipal solid wastes or hydrocarbons such as coal. It involves partial combustion of biomass in a gas flow containing a controlled level of oxygen at relatively high temperatures (500-800 ℃) yielding a main product of combustible syngas with some char. Although designed to produce gas, under some conditions gasifiers can produce reasonable yields of char and have been proposed as an alternative production route to pyrolysis for biochar (Brown, 2009).

Hydrothermal carbonisation is a completely different process involving the conversion of carbohydrate components of biomass (from cellulose) into carbon-rich solids in water at elevated temperature and pressure (Titirici et al, 2007). Under acidic conditions with catalysis by iron salts the reaction temperature may be as low as 200°. The process may be suitable for concentration of carbon from wet waste streams that would otherwise require drying

before pyrolysis, making it complementary to pyrolysis and a potential alternative to anaerobic digestion for treatment of some wastes.

2.3. Effects of Feedstock and Main Process Parameters

This section describes the effect of the main controllable factors affecting the distribution of products from pyrolysis processes. The effect of feedstock composition and preparation is discussed first followed by the effects of process operating conditions. Slow, intermediate and fast pyrolysis are all affected in a related manner but the importance of factors and the effect of changes on product yield distribution differs between process types.

2.3.1. Feedstock Composition

Biomass is generally composed of three main groups of natural polymeric materials: cellulose, hemicellulose and lignin. Other typical components are grouped as 'extractives' (generally smaller organic molecules or polymers) and minerals (inorganic compounds). These are present in differing proportions in different biomass types and these proportions influence the product distributions on pyrolysis (Antal and Grønli, 2003; Brown, 2009; Mohan et al, 2006).

On heating to pyrolysis temperatures the main components contribute to product yields broadly as follows (Antal and Grønli, 2003). Primary products of hemicellulose and cellulose decomposition are condensable vapours (hence liquid products) and gas. Lignin decomposes to liquid, gas and solid char products. Extractives contribute to liquid and gas products either through simple volatilisation or decomposition. Minerals in general remain in the char where they are termed ash. This distribution of components into products is shown schematically in Figure 1.

Figure 1. Simplified Representation of Biomass Pyrolysis

Vapours formed by primary decomposition of biomass components can be involved in secondary reactions in the gas phase, forming soot, or at hot surfaces, especially hot char surfaces where a secondary char is formed (Antal and Grønli, 2003). This is particularly important in understanding the differences between slow and fast pyrolysis and the factors affecting char yields and is discussed further in Section 2.3.4 below.

Minerals in biomass, particularly the alkali metals, can have a catalytic effect on pyrolysis reactions leading to increased char yields in some circumstances, in addition to the effect of ash contributing directly to char yield. Minerals also affect the reactivity and ignition properties of chars (Antal and Grønli, 2003).

2.3.2. Feedstock Preparation

Moisture content can have different effects on pyrolysis product yields depending on the conditions (Antal and Grønli, 2003). In traditional charcoal kilns heated internally by wood combustion, high moisture levels lead to reduced charcoal yields as a greater quantity of wood must be burnt to dry and heat the feed. For externally heated equipment the reported effect of steam on the yield of char varies depending on the conditions. Increased moisture present when pyrolysis reactions are performed under pressure has been shown to systematically increase char yields (Antal and Grønli, 2003).

Fast pyrolysis processes in general require a fairly dry feed, around 10% moisture (Bridgwater and Peacocke, 2000), so that the rate of temperature rise is not restricted by evaporation of water. Slow pyrolysis processes are more tolerant of moisture, the main issue being the effect on process energy requirement. For charcoal making, wood moisture contents of 15-20% are typical (Antal and Grønli, 2003). In all pyrolysis processes water is also a product and is usually collected together with other condensable vapours in the liquid product. Moisture in the reaction affects char properties and this has been used to produce activated carbons through pyrolysis of biomass (Zanzi et al, 2001).

Feed particle size can significantly affect the balance between char and liquid yields. Larger particle sizes tend to give more char by restricting the rate of disengagement of primary vapour products from the hot char particles, so increasing the scope for secondary char-forming reactions (discussed further in Section 2.3.4) (Antal and Grønli, 2003). Hence larger particles are beneficial in processes targeting char production and small particles are preferred to maximise liquid yields in fast pyrolysis.

2.3.3. Temperature Profile Control

The temperature profile is the most important aspect of operational control for pyrolysis processes. Material flow rates, both solid and gas phase, together with the reactor temperature control the key parameters of heating rate, peak temperature, residence time of solids and contact time between solid and gas phases. These factors affect the product distribution and the product properties.

For fast pyrolysis a rapid heating rate and a rapid rate for cooling primary vapours are required to minimise the extent of secondary reactions. These reactions not only reduce the liquid yield but also tend to reduce its quality, giving a more complex mixture, an increased degree of polymerisation and higher viscosity (Bridgwater and Peacocke, 2000). Conversely, in slow pyrolysis there is some evidence that slow heating leads to higher char yields, but this is not consistent (Antal and Grønli, 2003).

Peak temperature, however, has an unequivocal effect on char yields and properties. Higher temperatures lead to lower char yield in all pyrolysis reactions. This results from the main controlling variable of pyrolysis reaction kinetics being temperature (Antal and Grønli, 2003).

The effect can be thought of as more volatile material being forced out of the char at higher temperatures reducing yield but increasing the proportion of carbon in the char. Temperature also has an effect on char composition, chars produced at higher temperatures having higher carbon contents both total- and fixed-carbon (Antal and Grønli, 2003). This may have important implications for biochar stability in soils. Solid residence time is also important but to a lesser degree than peak temperature, longer time at temperature leading to lower char yield (Antal and Grønli, 2003).

The effect of temperature on liquid and gas yields is more complex. Liquid yields are higher with increased pyrolysis temperatures up to a maximum value, usually at 400-550 °C but dependent on equipment and other conditions. Above this temperature secondary reactions causing vapour decomposition become more dominant and the condensed liquid yields are reduced. Gas yields are generally low with irregular dependency on temperature below the peak temperature for liquid yield; above this gas yields are increased strongly by higher temperatures, as the main products of vapour decomposition are gases. For fast pyrolysis the peak liquid yields for slow pyrolysis are more variable. Demirbas (2001) reports peak liquid yields of 28-41% at temperatures between $377 \,^{\circ}$ C and $577 \,^{\circ}$ C, depending on feedstock, when using a laboratory slow pyrolysis technique. The Haloclean process yields a peak of 42-45% liquid at temperatures of $385-400^{\circ}$ with different straw feeds (Hornung et al, 2006).

The effects of peak pyrolysis temperature are shown for fast and intermediate pyrolysis examples in Figure 2; the trends for typical slow pyrolysis processes are similar to intermediate pyrolysis.

2.3.4. Gas Environment

Conditions in the gas phase during pyrolysis have a profound influence on product distributions and on the thermodynamics of the reaction. Most of the effects can be understood by considering the secondary char-forming reactions between primary vapour products and hot-char. The area is discussed in detail and rationalised by Antal and Grønli (2003) in the context of charcoal making; the main points are summarised here.

Gas flow rate through the reactor affects the contact time between primary vapours and hot char and so affects the degree of secondary char formation. Low flows favour char yield and are preferred for slow pyrolysis; high gas flows are used in fast pyrolysis, effectively stripping off the vapours as soon as they are formed.

Pressure has a similar effect. Higher pressure increases the activity of vapours within and at the surfaces of char particles so increasing secondary char formation. The effect is most marked at pressures up to 0.5MPa. Conversely, pyrolysis under vacuum gives little char, favouring liquid products. For pyrolysis under pressure, moisture in the vapour phase can systematically increase the yield of char, believed to be due to an autocatalytic effect of water, reducing the activation energy for pyrolysis reactions.

The thermodynamics of pyrolysis are also influenced by gas environment. The reaction is more exothermic at higher pressures and low flow rates. This is rationalised as being due to the greater degree of secondary char-forming reaction occurring. Hence, higher char yields are associated with conditions where pyrolysis is exothermic; such conditions will favour the overall energy balance of processes targeting char as product.

In summary, any factor of pyrolysis conditions that increases the contact between primary vapours and hot char, including high pressure, low gas flow, large particles or slow heating is likely to favour char formation at the expense of liquid yield. Antal and Grønli (2003) provide data from their own work indicating that chars formed under low flow, high pressure conditions with consequent higher char yields also have higher fixed-carbon yields. This effect

may be useful in maximising the carbon sequestration potential in biochars although there may be other changes in the char properties that are not immediately evident.

Source: Hornung, 2008.

Source: Dynamotive, 1999

Figure 2. Product Yield Trends with Pyrolysis Temperature

2.4. Carbon and Energy Flows on Pyrolysis

To determine how pyrolysis processes and biochar systems may benefit climate change, through their effect on emissions of greenhouse gases, an understanding of carbon and energy flows is required. This section gives a qualitative description of the main flows and considerations. A simple scheme showing the main carbon flows associated with biomass pyrolysis is given in Figure 3.

Carbon is drawn from the atmosphere as carbon dioxide by growing plants through photosynthesis and assimilated into biomass. Under natural processes of death and decomposition the carbon is released as carbon dioxide back to the atmosphere in a fairly short timescale. Biomass has an energy value roughly related to its carbon content (together with contributions from other elements and factors). This energy can be released through combustion and used for purposes such as electricity generation or heating. The carbon is thermo-chemically oxidised to carbon dioxide and returns to the atmosphere. In this manner the energy available from biomass is considered renewable and carbon neutral. If the usable energy so produced substitutes energy that would otherwise be obtained by burning fossil fuels, then the carbon dioxide emission associated with the fossil fuel combustion is avoided.

If biomass is pyrolysed, the carbon and the energy value are split between the three product streams: char, liquid and gas. The total mass of the products will be equal to the mass of the starting material, if properly accounted, and the total carbon content of the products will also equal that of the biomass. However, some energy is inevitably lost as heat from the process meaning the total energy value in the products is less than the starting material. Some energy is also required to run the pyrolysis process: to dry the feed, to heat to temperature, to drive equipment. In theory, all this can be supplied by recycle from the products, once the process has been started-up, with the effect that the product quantities available for use downstream of the pyrolysis process are reduced.

As with the biomass feed, the char and liquid products have energy values roughly related to their carbon contents. Release of this energy by combustion can again be considered as renewable and is largely carbon neutral (some emissions are associated with feedstock production and transport); the carbon returned to the atmosphere as carbon dioxide is the same as would otherwise have resulted from biomass decomposition. If the char product is not burnt, but retained in a way that the carbon in it is stable, then that carbon can be equated to carbon dioxide removed from the atmosphere and sequestered.

The gas product is typically a mixture of carbon dioxide (9-55% by volume), carbon monoxide (16-51%), hydrogen (2-43%), methane (4-11%) and small amounts of higher hydrocarbons (composition ranges from references cited in Appendix 2). The gases are usually present with nitrogen or other non-oxidising gas introduced to inert the pyrolysis equipment, this can be treated as a diluent and ignored for material balancing but will affect the heating value of the syngas. The carbon dioxide and nitrogen provide no energy value in combustion, the other gases are flammable and provide energy value in proportion to their individual properties. Again use of the energy in the gas can be considered as renewable and largely carbon neutral. No special consideration of the carbon dioxide in the pyrolysis gas is required as it is not additional to what would result from biomass decomposition.

Figure 3. Scheme Showing Main Carbon Flows Associated with Biomass Pyrolysis

As with biomass, any usable energy from combustion of the three pyrolysis products that substitutes for fossil fuel use is considered to avoid carbon dioxide emissions.

To summarise, from the point of view of carbon accounting and the effect on carbon dioxide in the atmosphere, carbon flows involved in biomass growth, decomposition and combustion, including the combustion of biomass pyrolysis products, can be considered as carbon neutral, having no effect on atmospheric carbon dioxide. Energy from biomass or its pyrolysis products used to substitute energy from fossil fuels leads to avoidance of carbon dioxide emissions compared to a reference case of fossil fuels use. Carbon stored in char is equated to carbon dioxide removed from the atmosphere. The sum of these last two effects gives the net effect on atmospheric carbon dioxide of biomass pyrolysis processes. There are clearly important considerations omitted from this simplification, a key one being the stability of carbon in char when used as biochar in soil amendment.

3. Biomass Pyrolysis: Review of Process Scope

3.1. Review Methodology

The aim of this study is to understand the scope of biomass pyrolysis processes appropriate for biochar production in terms of their range of feedstock, process and equipment type, operating conditions, product yields and energy values. A review of literature in the field was carried out covering charcoal making, laboratory-scale slow pyrolysis and a small number of reports on pilot or commercial scale 'modern' slow pyrolysis. Fast pyrolysis was covered to a limited extent focusing on pilot or commercial scale and laboratory-scale reports with good yield data. The review covered some sixty items and may be considered indicative but not comprehensive, there is much more published work on laboratory-scale processes and fast pyrolysis in particular. Summary information extracted from the review is given in Appendix 1 and discussed below.

3.2. Observations

There are a number of general observations that can be made on the literature reviewed.

Of the published work on slow pyrolysis most is focused on traditional charcoal making or is based on laboratory-scale studies, there is very little on the recent area of interest in producing biochar with co-products used for energy. The focus on charcoal means there is little available yield data for the liquid and gas co-products and even less where the energy values of the co-products are given. For fast pyrolysis processes, with their focus on conversion to energy products and greater degree of development, data coverage is better, but there are still very few reports giving sufficient data to construct complete energy and carbon balances over the process. Although many reports give a range of yields for varying conditions or feeds, few give data that shows reproducibility of results, a point that is taken up in Section 4.

3.3. Pyrolysis Process Scope

The total scope of pyrolysis processes reviewed, in terms of feedstock, operating conditions and product yields, is very wide. Pyrolysis of scores of different feedstocks has been reported, temperature and residence times varying over a wide range have been used and consequently yields of each of the three products also vary over wide ranges. Yield distributions are specific to individual sets of feed and process variables. However, typical ranges may be suggested from the review. Table 1 summarises the wider and typical ranges for key variables and product yields. Figure 4 attempts to give an idea of the process envelope in terms of temperature and product yields. It should be noted that the yields are interdependent and will always total 100% if fully accounted.

Although it is useful to summarise typical ranges of product yields for the main pyrolysis processes there will be many exceptions to these ranges. If comparing different processes or basing conclusions on a process output it is important that the key variables and the feedstock are defined, otherwise it is not possible to know whether conclusions are specific to that example or more generally applicable.

			Intermediate					
		Slow Pyrolysis	Pyrolysis	Fast Pyrolysis				
Feed		Scol	res of feeds repo	rted				
Temperature,	Range	250 - 750	320 - 500	400 - 750				
<u></u>	Typical	350 - 400	350 - 450	450 - 550				
Time	Range	mins - days	1 - 15 mins	ms - s				
	Typical	2 - 30 mins	4 mins	1 - 5 s				
Yields, % wt or	n dry							
Char	Range	2 - 60	19 - 73	0 - 50				
	Typical	25 - 35	30 - 40	10 - 25				
Liquid	Range	0 - 60	18 - 60	10 - 80				
	Typical	20 - 50	35 - 45	50 - 70				
Gas	Range	0 - 60	9 - 32	5 - 60				
	Typical	20 - 50	20 - 30	10 - 30				

Table 1. Scope of Pyrolysis Process Control and Yield Ranges

Source: References for literature review, see Appendix 1

Figure 4. Pictorial Representation of Pyrolysis Process Scope

3.4. Example Pyrolysis Data

From the first level literature review of pyrolysis processes, reports on processes involving specific feedstocks were selected and more detailed information extracted. The feeds were selected as those most likely to be available for biochar production in the UK in collaboration with a project team studying the potential for biochar pyrolysis systems (Sohi et al, 2009, unpublished work). Selected feeds were spruce wood, miscanthus, wheat straw, willow, and chicken litter. Full extracted information is included in Appendix 2; a summary of the key data available is given in Table 2.

The data in Table 2 allow a very limited comparison of the effect of different process types on product distributions from the same feedstock, but the consistency of the process examples is poor making paired comparisons difficult. The broad differences and trade-off expected between yields of slow and fast pyrolysis for char and liquid products are evident, although they are confounded by high gas yields in some cases. One exception is the fast pyrolysis of chicken litter where the char yields are high and equal to or greater than the liquid yields; this is explained by very high ash contents in the feed (*ca*.20%) and char (*ca*.40-60%wt) (Kim et al, 2009). The data exemplifies the wide range of yields discussed in the previous section, for instance char yields from slow pyrolysis ranging 12 to 61%. There is very limited data available on energy values of the products, only the set for intermediate pyrolysis of straw allowing a full energy balance calculation.

3.5. Pyrolysis Process Scope: Conclusions

Taken as a whole, this review of pyrolysis process scope shows that for any given feedstock it is possible to vary the product distribution between char, liquid and gas, within limits, by choice of process type and operating conditions. Higher char yields are obtained by slow pyrolysis processes with lower temperatures and low flow rates; higher liquid yields arise from fast pyrolysis processes, specific temperatures and high flow rates. The gas yield is not usually the focus of slow or fast pyrolysis and is generally not actually measured but calculated by difference in mass balance. High gas yields would best be provided by gasification processes, not covered by this review.

Similarly, for any given process and equipment set-up, different product distributions will arise from different feedstocks depending on their composition. However, this should not be a major factor in choice of feedstock for pyrolysis, as controllable operating conditions, such as temperature, generally have a larger effect and could be changed to adjust product distributions. Choice of feedstock is more likely to be dependent on factors such as availability, cost and sustainability considerations.

The wide envelopes of process operation and product distribution for pyrolysis processes imply that choices over process type, operation or feedstock may give different outcomes in terms of effect on climate change mitigation, or other objectives.

				Pyrolysis			Char			Gas			Liquid
		Feed	Feed	Temp-	Char	Char	Energy	Gas	Gas	Energy	Liquid	Liquid	Energy
Feed	Process Type and Reference	Moisture	Energy	erature	Yield	Energy	Yield	Yield	Energy	Yield	Yield	Energy	Yield
		%wt	MJ/kg	ů	%wt	MJ/kg	% feed energy	%wt	MJ/kg	% feed energy	%wt	MJ/kg	% feed energy
Spruce	Fast pyrolysis, Waterloo process, continuous shallow fluidised bed (Scott et al. 1999)	7		500	12			8			78		
Spruce	Fast pyrolysis, Lurgi-Ruhrgas twin-screw pyrolyser, (Henrich, 2007)	6	16	500	17			13			70		
Spruce	Fast vacuum pyrolysis, Pyrovac process, agitated vacuum tube, (Bridgwater and Peacocke, 2000)	15		450	24			12			64		
Spruce	Slow pyrolysis, laboratory, sealed tube, (Demirbas, 2001)		19.77	377	32.6	29.34	48	20.2			47.2		
Miscanthus	Fast pyrolysis with partial combustion, fluidised bed, (Rocha et al, 2002)	10-12	17.7	450-500	12-15	20-25	17	10-12			70-75		
Miscanthus	Slow pyrolysis, laboratory, rotary kiln, (Michel et al, 2006)	9.6		500	23,28	29		46,51			26		
Miscanthus	Slow pyrolysis with steam activation, laboratory, vertical tube packed bed, (Zanzi et al, 2001)	6.6		550	24			10			66		
W heat Straw	Fast pyrolysis, Biotherm process, deep fluidised bed, (Scott et al, 1999; Radlein and Kingston, 2007)	1,8		440-550	18-30			18-24			49-58		
W heat Straw	Intermediate pyrolysis, Haloclean process, rotary kiln with screw, (Hornung et al, 2006)		15.9	400	33-35	25	52-55	20-32	11	14-22	35-45	12	26-34
W heat Straw pellets	Slow pyrolysis with steam activation, laboratory, vertical tube packed bed, (Zanzi et al, 2001)	6.9		550	25			12			63		
Willow	Slow pyrolysis, laboratory, horrizontal tube with silica, (Leivens et al, 2009)	10,12	16,14	350	61,55			<1			38,45	23	55,74
Willow	Slow pyrolysis with steam activation, laboratory, vertical tube packed bed, (Zanzi et al, 2001)	7.3		650	12			49			39		
Chicken Litter	Fast pyrolysis, bench scale fluidised bed, (Kim et al. 2009; Mante, 2008)	8-10	15	450,470	41,43			36,13			23,43	27,30	41,86

Table 2. Summary of Pyrolysis Data for Selected Feedstocks

4. Variability in Pyrolysis Processes

4.1. Introduction

The previous section established that the product distributions of pyrolysis processes can fall within a wide envelope and that they can be selected, or controlled to a degree, by choice of feedstock, process type, and operating conditions. In this section the variability associated with a specific set of choices is examined. That is, how reproducible are product distributions for a given combination of process, feedstock and operating conditions? It is important to understand this to know how much credence to put on assessments of biochar systems where a single yield figure is used for char. If there is an inherent variability in char yield the benefits arising from biochar systems can also be expected to be variable. This section considers the sources, evidence and magnitude of yield variability. The sensitivity of system benefits to biochar yield variation in a number of literature case studies is also examined.

4.2. Sources of Variability

Sources of variability will relate to the main controlling parameters described in Section 2. Variation in biomass feedstock, even if nominally a single source, is likely to be one of the main causes of variability (Downie, 2009). The exact composition of a type of biomass will vary depending on many factors relating to when, where and how it was grown, for instance the weather, soil type and agricultural regime. Figures for carbon contents in nominally the same type of biomass may differ by as much as 10% relative (Gaur and Reed, 1995). The composition of a single supply of a particular biomass type should be more consistent but is not likely to be truly homogenous, except at small scale, unless special provisions for mixing and blending are made. Feedstock moisture content and particle size may vary within and between loads and affect process yields.

Temperature control is also likely to be an important cause of variability, particularly for slow pyrolysis. The lower heat fluxes and longer residence times of slow pyrolysis give scope for variation in heating rate and peak temperature. Yields from traditional charcoal kilns are known to be affected by weather conditions (Toole et al, 1961), due to the effect on temperature control and fuel-wood consumption. The BEST Energies slow pyrolysis demonstration plant is reported (Downie et al, 2007) to operate with a $\pm 30 \,^{\circ}$ C temperature range under continuous steady-state conditions at 550 $^{\circ}$ C and this is considered to be "a highly controlled process" (Downie, 2009). Reference to the charts in Section 2 suggests this temperature range would lead to detectable variation in yield.

Fast pyrolysis, at least fluidised bed and similar systems, might be expected to have less variability due to the need for tight control of material and heat flows and the engineering design measures to achieve this. However, limited evidence suggests variability is no less for fast than for slow pyrolysis.

4.3. Evidence and Magnitude of Variability

Literature on pyrolysis reviewed for this study generally gives yield data as single values or as a range relating to different operating conditions. For single values, there is rarely any indication of whether this is an average of several experiments or one result. However, five reports were found where multiple yield data were given from the same, or very similar conditions and feedstocks.

These include two studies of traditional charcoal making, one involving masonry block kilns (Toole et al, 1961), one a simple oil-drum kiln (Okimori et al, 2003); these studies gave yields for charcoal only. Information on the Haloclean intermediate pyrolysis process (Hornung et al, 2006) gives yield data for char, liquid and gas for three runs at different temperatures, but

within a range representing typical operational variation (375-400 °C). Similarly, data for the Biotherm fast pyrolysis process (Dynamotive, 1999) gives yields for different temperatures (459-490 °C) close to or within the stated design range (470-490 °C). Data for the GRTI fast pyrolysis pilot plant (abandoned in 1989) also relate to a narrow range of typical operating temperatures (499-524 °C) (Bridgwater and Peacocke, 2000). These data are summarised in Table 3 where an average, absolute range, and percent relative standard deviation (%RSD) is given for each set.

Table 3. Summary of Pyrolysis	s Yield Variability Data

				Char			Liquid			Gas	
		Data	Ave.			Ave.			Ave.		
		points	Yield	Range	%RSD	Yield	Range	%RSD	Yield	Range	%RSD
Process and Reference	Feed	#	% wt	% wt	%	% wt	% wt	%	% wt	% wt	%
Traditional charcoal making, olock kins, various feeds	Oak manle other										
(Toole et al, 1961)	hardwoods	16	28.2	6	8.7						
Traditional charcoal making,	Seasoned maple (ave. 31% moisture)	9	29.5	5	5.8						
(Toole et al, 1961)	Unseasoned maple (ave. 58% moisture)	5	26	ε	4.2						
Traditiona charcoal making, drum kilns (Okimori et al											
2003)	Acacia	ო	25.4	2.6	4.6						
Intermediate pyrolysis,											
Haloclean process, rotary											
kiln with screw, (Hornung et											
al, 2006)	W heat straw	ю	36	5	5.4	38	7	7.5	26.1	10	16.1
Fast pyrolysis, Biotherm											
process, (Dynamotive, 1999)	W ood, undefined	4	21.3	9.5	16.3	64.4	20	12.3	13.9	15	42.8
Fast pyrolysis, GTRI											
process, entrained flow tube,											
(Bridgwater and Peacocke,											
2000)	W ood, undefined	5	11.9	13.6	41.5	53.8	11.9	7.2	34.4	20.4	21.6
Fast pyrolysis, bench scale	Oreganum stalk		23		8	39		8			
continuous fluidised bed,	Corncob		23		7	41		2			
(Yanik et al, 2007)	Straw		20		2	35		4			

A further report (Yanik et al, 2007) stating a degree of variation of char and liquid yields for given conditions is also summarised in Table 3. This study used fast pyrolysis with a bench-scale continuous fluidised bed reactor at a fixed temperature (500°) and three different feeds. In Table 3 the stated variation is taken as standard deviation and converted to %RSD, however, this may be an over-estimate as it is not clear from the report if standard deviation or range is given.

This data appears insufficient to be statistically significant but may justify an opinion that variability in char yields from intermediate pyrolysis or charcoal making, and by implication slow pyrolysis, is of the order of 5%RSD. This would imply a likely variability of $\pm 1.5\%$ absolute in a typical slow pyrolysis char yield of 30%.

The data for liquid yields support a similar estimate of an order of 5%RSD variability, with the exception of data for the Biotherm process. However, if the data points from temperatures outside the Biotherm design range are excluded, the variability in the two remaining points is within this estimate. The gas yields appear to vary to a greater degree but the data is insufficient to generalise. Greater variability in gas yields could be rationalised as due to difficulties in measurement or collection of gas product but it may simply arise arithmetically through the usual calculation of gas yields from the mass balance; absolute errors or variability in liquid and char yields will add to give larger absolute error in gas yield.

Variability in char yield from the GTRI fast pyrolysis process looks to be greater than other processes, this may be related to the low char yield. It is not possible to conclude a clear difference in variability between fast and other pyrolysis processes from this data, although an impression of greater variability in fast processes may be given.

The views of industry experts on the causes and degree of variability in pyrolysis process yields were sought to substantiate the conclusions drawn. Adriana Downie of BEST Energies gave the following comments on sources of variability (Downie, 2009).

"Yields change dramatically due to feedstock... the heat and mass transfer of the feedstock changes with composition and particle size distribution. These are the greatest factors that will determine the yield variability in any system... more often than not, the variables in the process outputs will come directly from the variability in the feedstocks."

The estimate of magnitude of char yield variability is given support by comments from Cordner Peacocke (2009):

"When I've performed fast pyrolysis experiments on clean softwoods, I can usually get the char yields to be very consistent, within a few percent of the measured value."

Although this presents a view of consistency, it accepts a variability in line with the conclusion drawn above of an order of 5%RSD variability in product yields.

4.4. Sensitivity of Biochar System Benefits to Yield Variability

The significance of this estimated char yield variability has been examined using simple sensitivity analysis of four literature case studies, three focusing on carbon abatement outcomes, one considering financial viability of pyrolysis processes. In each case the calculations made in the study were repeated using char yields 5% (relative) lower and higher than used in the original report and sensitivity to the change was determined.

4.4.1. Case Study 1

A study by Okimori et al (2003) investigated potential carbon dioxide emission reductions through carbonisation of forestry wastes from acacia plantations in Indonesia. The wastes would be converted to charcoal in small, local facilities using drum, pipe or brick kilns with no capture of liquid or gas products for energy use. The char could be re-applied to soils in forest re-plantation or in agriculture leading to sequestration of carbon, although a market for charcoal for combustion was also recognised. A potential for sequestration of *ca*.48,500 t-C/yr was estimated from this activity given an annual plantation area harvested of 10,750 ha.

Applying the estimated relative variability in char yield of $\pm 5\%$ in this case study gave a directly proportional change of $\pm 5\%$ in the resulting benefit, implying a range of *ca.*46,000-51,000 t-C/yr potential carbon sequestration. This is displayed in Figure 5.

Figure 5. Okimori Case Study: Sensitivity of Carbon Sequestered to Char Yield Variation

4.4.2. Case Study 2

Ogawa et al. (2006) examined a number of cases for carbon sequestration through biomass carbonisation, two of which are considered here and in the following section. The first was based on acacia forestry in Indonesia, as above, but this time also combined with carbonisation of wastes from the associated pulp mill. The biochar produced would again be used for soil improvement in forestry and agriculture.

The total potential for carbon sequestration estimated in this case was 15,571 t-C/yr. Applying the \pm 5% char yield variability estimate to calculations in this study leads to a change of \pm 6% in benefit. The slightly exaggerated effect is due to an external fuel consumption allowed for in the calculation, assumed to be independent of char yield, and to the arithmetic effect of adding together the two halves of the case. The resulting range of benefit, 14,642-16,501 t-C/yr, is shown in Figure 6. This arises from a harvested forest area of 12,000 ha/yr, the lower

benefit figure compared to the Okimori case described above is due to a lower assumed proportion of forest residues available for carbonisation.

Figure 6. Ogawa Case Study (Forestry and Pulp Mill): Sensitivity of Carbon Sequestered to Char Yield Variation

4.4.3. Case Study 3

Another case studied by Ogawa et al (2006) involved mixing char produced from sawmill wastes with cattle manure to give a biochar compost used in agriculture in Japan on a small scale. This example combines benefits in waste disposal and carbon sequestration. Applying the same method as above gives a $\pm 6\%$ change in a projected benefit of 298 t-C/yr sequestered. The slightly exaggerated sensitivity compared to the $\pm 5\%$ yield variation is again due to a fuel use not proportional to char yield. The range of benefit, 280-316 t-C/yr, is shown in Figure 7.

Figure 7. Ogawa Case Study (Sawmill Waste): Sensitivity of Carbon Sequestered to Char Yield Variation

4.4.4. Case Study 4

McCarl and co-authors (2009) present an economic analysis of the use of fast and slow pyrolysis for biochar production from maize stover (stalks and leaves) in the book *Biochar for Environmental Management* (Lehmann and Joseph, 2009). The analysis is based on data for the Biotherm fast pyrolysis process with estimates made to give corresponding information for an arbitrary slow pyrolysis process. The analysis assumes use of primary pyrolysis products as process energy source (all syngas and some char in the fast pyrolysis case) with all the liquid product converted to electricity. Excess char is available for soil amendment and is given a value in the analysis related to its greenhouse gas offset at contemporary prices. The use of about two thirds of the char product for process energy in the fast pyrolysis case, a feature of the Biotherm process (Dynamotive, 1999), leaves little available for greenhouse gas offset as soil amendment but maximises the liquid product availability for electrical generation.

The analysis considers capital and operating costs for the two processes balanced by revenue from electricity and biochar sales, and greenhouse gas offsets (McCarl et al, 2009). It predicts a negative net margin, or loss, in each case of -44.6 and -70.1 US\$/t-feedstock for fast and slow pyrolysis respectively. Applying the estimated char yield variability of \pm 5% leads to only small changes in the estimated margins of \pm 0.8% for fast pyrolysis and \pm 1.2% for slow, as shown in Figure 8. The insensitivity of the net margin to biochar yield reflects the small proportion of the total represented by the biochar and greenhouse gas offset values compared to the value of electricity sales. The difference between fast and slow pyrolysis sensitivity is due to the greater availability of biochar product in the slow pyrolysis case.

Figure 8. McCarl Case Study: Sensitivity of Financial Analysis to Char Yield Variation

4.5. Significance of Yield Variability

In any technology assessment or forecasting exercise, it is important to understand the accuracy that can be attached to a data set. The evidence for char yield variability in pyrolysis processes, while limited, suggests an order of $\pm 5\%$ RSD may be a reasonable estimate of variability. From the sensitivity analysis above it appears that variability in biochar system benefits may be exaggerated or diminished compared to the variability in char yield depending on the way in which biochar contributes in the benefit calculation. In the examples given where the effect is exaggerated, this is due to a subtractive factor independent of char yield reducing the net benefit while the absolute change in benefit with yield variation remains the same; hence the relative change is exaggerated. It should be expected that such exaggeration would be more significant for cases where the benefits of biochar systems are more marginal

In each of the case studies presented, several assumptions have been made to arrive at the projections of biochar system benefits. The variation in benefits arising from char yield variability is generally no greater, and often smaller than the effect of other assumptions made, but it remains as an underlying, if low level, cause of uncertainty.

5. Conclusions

This review has focussed on the performance of biomass pyrolysis processes for use in biochar systems. The objectives have been to understand the range of control achieved by these processes and the degree of variability that may be associated with reported data for product yields.

There are several technologies capable of converting biomass to solid char products that may be suitable for use as biochar, often with liquid and gas co-products that can be used as fuels. Two main process types, slow and fast pyrolysis, plus the related intermediate pyrolysis have been reviewed to establish the scope of their operational control and variability. The main factors affecting yield distributions and properties of the products are the biomass feedstock itself (its composition and preparation) and the control of temperature and material flows during the pyrolysis process. Key factors are the peak reaction temperature and the gas environment affecting contact between primary solid and gas-phase products.

Product yield distributions from pyrolysis vary widely depending on feedstock, process type, reaction conditions and equipment used. These factors allow a degree of control over which main product, char, liquid or gas, is delivered through biomass pyrolysis. Typical mass yield ranges for slow pyrolysis are char 25-35%, liquid 20-50%, gas 20-50%; for intermediate pyrolysis, char 30-40%, liquid 35-45%, gas 20-30%; and for fast pyrolysis, char 10-25%, liquid 50-70%, gas 10-30%. In general slow and intermediate pyrolysis give higher char yields while fast pyrolysis gives higher liquid yields. Care should be taken when using such generalisations as there are important exceptions. For any comparison of biochar systems or their potential benefits to be meaningful the feedstock, pyrolysis process and outputs assumed should be clearly specified.

The variability associated with a particular yield figure for char from slow or intermediate pyrolysis has been estimated at $\pm 5\%$ (relative). Some support for this order of variability has been given by industry experts. The variability for liquid and gas yields or for yields from fast pyrolysis is less clear but may be of a similar order. Analysis of sensitivity to this char yield variability has been carried out for some literature case studies of biochar systems. The effect is diminished or magnified depending on how char yield contributes to the calculation of system benefits. Char yield should be considered as an underlying source of variability in pyrolysis biochar systems although it is unlikely to be more significant than the effect of other uncertainties and assumptions.

The range of control of product distributions from biomass pyrolysis, through choice of feedstock, process and conditions, gives the potential to optimise the process to satisfy different objectives. The effect of these choices on the potential for mitigation of climate change through use of pyrolysis biochar systems with soil carbon storage has been the subject of a related study which is reported elsewhere (Brownsort, 2009; Brownsort et al, 2010, in preparation).

References

Antal, M.J., Grønli, M. (2003) The art, science and technology of charcoal production. *Industrial and Engineering Chemistry Research.* **42**, (8), 1619-1640.

Antal, M.J., Mochidzuki, K., Paredes, L.S., (2003). Flash carbonisation of biomass. *Industrial and Engineering Chemistry Research*. **42**, 3690-3699.

BEST Energies Inc. (2009). BEST Energies web site BEST Energies Inc., Wisconsin, USA. <u>http://www.bestenergies.com/companies/bestpyrolysis.html</u> 12.08.09

Bridgwater, A.V., Peacocke, G.V.C. (2000). Fast Pyrolysis Processes for Biomass. *Renewable and Sustainable Energy Reviews.* **4**, 1-73.

Bridgwater, A.V., Meier, D., Radlein, D. (1999). An overview of fast pyrolysis of biomass. *Organic Geochemistry.* **30**, 1479-1493.

Brown, R. (2009). Biochar Production Technology. Chapter 8 in J. Lehmann and S. Joseph (eds) *Biochar for Environmental Management*. Earthscan, London.

Brownsort, P.A. (2009). *Biomass Pyrolysis Processes: Performance Parameters and their Influence on Biochar System Benefits*. MSc Dissertation, University of Edinburgh, UK.

Brownsort, P.A., Hammond, J.R., Mašek, O., Shackley, S. (2010), publication in preparation.

Carbon Diversion Inc. (2009). Carbon Diversion Inc web site. Carbon Diversion Incorporated, Hawaii, USA. <u>http://www.carbondiversion.com/Home</u> 17.08.09

Demirbas, A., Arin, G. (2002). An Overview of Biomass Pyrolysis. *Energy Sources.* 24, 471-482.

Demirbas, A. (2001). Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. *Energy Conversion and Management.* **42**, 1229-1238.

Downie, A., Klatt, P., Munroe, P. (2007). Slow pyrolysis: Australian demonstration plant successful on multi-feedstocks. *Bioenergy 2007 Conference, Finland.*

Downie, A. (2009). Personal communication. _02.07.09

Dynamotive Energy Systems Corporation. (1999). BioTherm[™] - a system for continuous quality, fast pyrolysis biooil. *Fourth Biomass Conference of the Americas.* http://www.biooil.ru/docs/1999OaklandBiomassPaper.pdf 15.08.09

Dynamotive Energy Systems Corporation. (2009). Dynamotive web site. *Corporate Presentation - Biomass into Synthetic Fuels*. Dynamotive Energy Systems, Richmond, BC, Canada. <u>http://www.dynamotive.com/wp-content/themes/dynamotive/pdf/09.06.02-French-Delegation-Visit.pdf</u> 14.08.09

Ensyn Corporation (2009). Ensyn Corporation web site. Ensyn Corporation, Wilmington, Delaware, USA. <u>http://www.ensyn.com/tech.htm</u> 17.08.09

Fowles, M. (2007). Black carbon sequestration as an alternative to bioenergy. *Biomass and Bioenergy*. **31**, 426-432.

Gaunt, J.L., Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis energy production. *Environmental Science and Technology*. **42**, (11), 4152-4158.

Gaur, S., Reed, T.B. (1995). An Atlas of Thermal Data for Biomass and Other Fuels. National Renewable Energy Laboratory, Golden, Colorado, USA.

Henrich, E. (2007). The status of the FZK concept of biomass gasification. *The status of the FZK concept of biomass gasification.* Forschungszentrum Karlsruhe GmbH. Karlsruhe, Germany.

Hornung, A., Bockhorn, H., Appenzeller, K., Roggero, C.M., Tumiatti, V. (2004). *Plant for the thermal treatment of material and operation process thereof.* US Patent Application No.: 10/451018.

Hornung, A., Apfelbacher, W., Koch, W., Linek, A., Sagi, S., Schoner, J., Stohr, J., Seifert, H., Tumiatti, V., Lenzi, F. (2006). Thermo-chemical conversion of straw - Haloclean intermediate pyrolysis *17th International Symposium on Analytical and Applied Pyrolysis, 2006.*

Kim, S.S., Agblevor, F.A., Lim, J. (2009). Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. *Journal of Industrial and Engineering Chemistry*. **15**, 247-252.

Lehmann, J., Joseph, S. (2009). Chapter 1 in J. Lehmann and S. Joseph (eds) *Biochar for Environmental Management*. Earthscan, London.

Lehmann, J., Gaunt, J., Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems a review. *Mitigation and Adaptation Strategies for Global Change*. **11**, 403-427. <u>http://www.cleanrg.com/Articles/Lehman(2006)%20-%20Bio-</u> <u>char%20Sequestration%20in%20Terrestrial%20Ecosyst.pdf</u>_03.04.09

Lehmann, J., Czimczik, C., Laird, D., Sohi, S. (2009). Stability of Biochar in the Soil. Chapter 11 in J. Lehmann and S. Joseph (eds) *Biochar for Environmental Management.* Earthscan, London.

McCarl, B.A., Peacocke, C., Chrisman, R., Kung, C-C., Sands, R.D. (2009). Economics of biochar production, utilization and greenhouse gas offsets. Chapter 19 in J. Lehmann and S. Joseph (eds) *Biochar for Environmental Management.* Earthscan, London.

Mistry, P., Mouat, A., Campbell, K., Howes, P. (2008). *The Evaluation of Energy from Biowaste Arisings and Forest Residues in Scotland.* AEA Energy & Environment, report for SEPA, Glengarnock, UK

http://www.sepa.org.uk/waste/waste_publications/idoc.ashx?docid=f27bd8f1-4789-4b6d-9be2-a88c9f552512&version=-1_17.08.09

Mohan, D., Pittman, C.U., Steele, P.H. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. *Energy and Fuels.* **20**, (3), 848-889.

Ogawa, M., Okimori, Y., Takihashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: three case studies. *Mitigation and Adaptation Strategies for Global Change.* **11**, 429-444.

Okimori, Y., Ogawa, M., Takahashi, F. (2003). Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in south Sumatra, Indonesia. *Mitigation and Adaptation Strategies for Global Change.* **8**, 261-280.

Peacocke, C. (2009). Personal communication. 07.07.09

Pro-Natura. (2008). Fighting climate change with green charcoal and increasing agricultural productivity. Newsletter December 2008. Pro-Natura, Paris. http://www.pronatura.org/archives/200812 GreenCharcoal en.pdf 15.08.09

Sohi, S., Shackley, S., Masek, O., Thornley, P., Carter, S., Hammond, J.R., Brownsort, P.A., and others. (2009). Unpublished work. *Report for Defra Contract*. UK Biochar Research Centre, University of Edinburgh, Edinburgh.

Titirici, M-M., Thomas, A., Antonietti, M. (2007). Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? *New Journal of Chemistry*. **31**, 787-789.

Toole, A.W., Lane, P.H., Arbogast, C., Smith, W.R., Peter, R., Locke, E.G., Beglinger, E, Erickson, E.C.O. (1961). *Charcoal Production, Marketing and Use.* Forest Service, US Department of Agriculture. Report No.: 2213 http://www.fpl.fs.fed.us/documnts/fplr/fplr2213.pdf 15.08.09

Yanik, J., Kornmayer, C., Saglam, M., Yuksel, M. (2007). Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products. *Fuel Processing Technology*. **88**, 942-947.

Zanzi, R., Bai, X., Capdevila, P., Bjornbom, E. (2001). Pyrolysis of biomass in the presence of steam for preparation of activated carbon, liquid and gaseous products. *6th World Congress of Chemical Engineering*, 2001.

APPENDIX 1

Pyrolysis Process Literature Review

The following pages hold spreadsheet prints with information and summary data from the literature review of pyrolysis processes.

Copies of the spreadsheet may be available from the author.

Comment	Low temp used to keep heavy metals in the char, but possibly not very chared at 350 °C. High char yield includes ash, but if expressed on dry higher still - 61, 54,2% wron dry	Range of temps all high as trying to get activated carbon product. No energy values given. No do with activation gas weeps - steam in this paper. Other papers with inert gas Ar on N2, higher yields for char but thile other data. Miss 30-45%, straw 30-32%,	Gas reused for process heat	Gas/vapours most consumed with excess of 120-150kW heat value for other uses. Need to search acedemia for more data.	Oil vield seems too bw. Tonnes ber month?	das reused, high-ish fixed-C implies a real high yield.	Gives variation for final temp (500,600), form (straw or pellet) heating trate (2.5-15 Kmin). Oil yeat incudes water. No data on (non systematic) variability other than unexpected trend with particle size (larger-sless char) which could be variability??	Gas and vapours burned for process heat or power	No yields given in patent or TH website. Link from //terrapreta.bioenergylists.org/company	Yields at pyrolysis output stage, plus water 32%. Output fed to 5 reformer -> H2 57%. CO2 26%. CO 12%. CH4 5%.	solid yield seems high for true char yield on daf basis, maybe includes ash?	Gives ele anal for char as 51% others' confirming high ash in this vield	Yapour/gas used for feed drying and process heat, Reumerman 2002 gives yield on dry of 41%.	Pressurised with an air input, ignition of biomass, but yield still approaching theoretical, off gas not flammable, is the combustion is of gas/vapour, no oil recovered in Antal 2003 paper, but CDI show oil as a product. Yields from paper, CDI site outdes no yield.	But quotes 25% of each char and oil in text, gas yield 100/141 total mass input basis. P.11 of review	Plant uses air to fluidise and partial combustion for heat input. Oil and Gas yields not defined. Char separation poor and much ended up in the oil.	25 Zab quote of figures for Avezzano plant, 15% missing ?Water?
, Gas Yield, %	3, <1	10,12,45	~ ~			~.	46-51	ć			71m3/t .9 feed			*	5		5 L
Oil Yield %	33.9, 40. of which about 20 is water o reaction	66,63,39	some		small, 15 50 kg/month	some	24-34	ć			8	18-27		*	50		28
ld, % Yield Basis	%w/w as fed %w/w as fed (moist 12.3, 9.9%), including ash, 49.1 [1.6, 3.4	55,12 %wt maf	35 dry feed	on <15% moist feed (I.e. higher if expressed on (0-45 dry)	5-37 drv feed	13-40 ?	6-29 on dry	25 dry feed		on dry feed	56 daf???	09-00	0-32 ?	.5-40 dry feed	20.5 daf	0: 18 on dry feed	31.5 on dry feed
Char Yie	54,	54,5					-					U)		ß		15-2	
Feed (data extracted)	Willow, leaves and branches, from contam inated land	Bagasse, miscanthus, olive waste, straw pellet, straw, salix, birch (Misc, Straw pel, salix)	oak wood, <25% moisture and 10cm chunks	Mixed ag or for waste	poow	African woods	Miscanthus (M straw and pellets)	fine wood or ag waste	any biomass, low grade coal	Peanut shells	MSW	sewage, msw, ag waste	various woods	any biomass	Wood/ ag waste	Forest res	
Scale	39	655	25000tpa Char	4-5 t char per day, (~500kg/h cont feed)	100t/month	600 lt/40min	10-30g bx	2-5000tpa char	100-250kg/h	Full scale ? 225kg/h of 225kg/h of vapours, 50kg/h biomass pilot	11/d (41 kg/h)	up to 400ka/h	up to 11000tpa	1 tor 3.5t	500 ka/h	9-1200kg/h dry feed	
Status	Lab	Lab	Commercial	Pilot, small 'commercial', few?	Trad	Commercial	Lab	Commercial	Commercial	Based on Scientific Carbons Inc existing facility		commercialised	Established, eg Carbo Group	Commercial	Pilot	Pilot	
Equipment Type	Static horrizontal tube	Vertical tube of horrizontal rotating tube with sweep of inert, steam &/or co2	Continuous vertical retort	'Rotary Retort' (Horrizontal drum) - how driven?	Mechanical mat handling, vapour recoverv	Semi/continuous vertical retort	Rotary kiln	Rotary hearth	Rotary kiln		Rotary kiln	Various: cone screw, rotary furnace, F- Bed, transport belt	Twin cannisters	Pressurised reactor	Fluidised/stirred bed	Fluidised bed	
Process Temp, °C	350	550-750	Feed gas 900	550		Feed gas 600-700	400-600	900-1000	up to 850		'fairly low'	300-350		400-800	200	400	
Pyrolysis Type	Slow	Slow	Slow	SION	Slow	Slow	Nors	Slow	Slow	S S S	Slow	Slow	Slow	Pressure Slow	Intermediate	Intermediate	Intermediate
Source Ref	Lievens et al, 2009	Zanzi et al, 2001	Domac et al, 1985	Pro-Natura, 2008 (Newsletter).	Rocha et al. 2002	Domac et al, 1985; Honsbein, 2005	Michel et al, 2006	Domac et al, 1985	Someus, 1993 (US Patent)	Yeboah et al, 2003	Bridgwater, Peacocke, 2000	Bridgwater, Peacocke. 2000	Antal and Gronli, 2003	Antal et al, 2003	Bridgwater, Peacocke, 2000	Zabaniotou and Karabelas, 1999	Zabaniotou and Karabelas, 1999
Organisation	CMK, Uni Hasselt, Belgium	RIT, Stockholm/ BAS, Sofia		Pro-Natura		Aston, and Namibia Investment t Centre	v Uni of Metz		Terra Humana, Hungary	Scientific Carbons/Eprida /NREL	Uni of Tubingen	Uni of Tubinaen	eg Crarbo Group	Carbon Diversion Technologies	Alten (KTI/ Italenergie)	Uni of Thessaloniki / Italenegie	
Process	Lab-slow	Lab-slow	Lambiotte	Pyro-6F, Pyro- 7 (Pro-Natura)	Rectangular kilns	Reichert Reton	Research, slow py	Rotary hearth	Rotary kilns	Scientific Carbons	Stennau	Tubingen	VMR oven	Flash Carbonisation	ALTEN	ALTEN	ALTEN

Comment	Lowest temp may not be highly carbonised. Varies 49-34 over 350- 100 °C. Note probable typo giving 50% Char yield at 450° noted in 0101 rtable (2005), corrected in 2008b.	Pairs of results showing up to 18% variation in char yield for 50 °C themp difference. Also gives charts with variation by feed form for straw - poder 38% pellets 45% at 375 °C. Also pellets 45-35% for 375-400 °C. so quite sensitive - useful data sets?		Possibly same work as Hornung reports. Yields from a chart - unclear. Quotes a 'water' yield which I think is really an aqueous organic fraction which is combustible in their engine.	egs given for fr/spruce bark vs spruce wood. Integrated process burs chart for elec and tast for process head	Based on figures for wood in patent. Char from chicken manure 45% i vield. ROI call process Fast Pv. Patent saved not printed.	Óil includes reaction water. Fóur runs given 550-602 °C - perhaps less variable?		five runs quoted, reactor temps 499-524, showing variation, these were later runs once plant optimised, so indicative of variability	Neither of these set-ups seem very representative of large scale tast or slow processes		4 Pine22,63,15. Same group as Kim 2007	Plus 6% water in each case. Gives errors of +/- 1.9,1.4,0.4 on char Vields. Residence times 1-2e.	Aiming for oil for BTL process, atthough char included in the slurry for dasification, paper saved not printed	s BTG has/is scaling up	Not noted in detail as have other sources but does have some yield egs if needed	Gives good set of comparison and variance data. Char yield variability at design conditions ranges 4%, oil and gas ranges higher at low terms.	Gives data for hardwood sawdust, wheat straw, bagasse. Key to RTI process is discovery that longer vapour residence times don't adverselv affect the oil vields in bubbling FBs.	gas and char recycled for heat	gas recirculated		Bridgwater consults for them ?? Not sure of status. Char and ?gas consumed.	B RTI Patent gives 'poorer looking' data from WFPP for comparison.	Gives various other yield data in charts for other feeds. Char yields 25 55 at 400-450°C, but ol optimum iemp 500-550. Might be worth ostitior the Caradian patient for W FPP
Gas Viold «	9-32	10-42	6	10-20	1,12		6.2-10.4	15-20	27.9-44.3	10-63	32-61	<u>ب</u>	32,30,39		0		13; 12	10-20			4 13.2		5.	11-14
Oil Yield,	, 18-42-35	38-57	50-60	40-60	35.47	Ö	74-80.8	70-75	48.1-60.0	10-30	15-29	4	39,41,35,	50-60; 60 70	9		72:62	49-74	75 (Ensyn) up to 83	up to 70	72.	^20	29.	21-32
Yield Basis	on dry feed (?)	on dry feed (?)	i	on dry feed (?)	drv feed	drv feed	? Dry	dry feed	daf	%wt as fed (?)	%wt as fed (?)	%wt on dry	dry feed	dry feed			as fed (<10% moist)	drv feed		dry feed	dry feed		6	as fed (9%moist, 11% ash)
Char Yield, %	73-34	15-41	20-30	20-40	34.24	25	13.8-15.7	5-15	7.6-21.2	50-15	22-44	43	23,23,20	20-30 straw, 15 20 wood	15		15:26	12.5-30	0	15-20	14.35	•	30.5	45.7-19
Feed (data	Detailed in pres	Detailed in pres	Ag and For wastes	rape, rice, straw	biomass, industria and MS wastes (Fir/spruce bark, spruce wood)	wood, chicken manure	wood eg poplar	Various biomass	poom	Corn cob and stalk	Chicken and turkey litters, bedding material	Chicken litter, pine and oak shavings	Corncob, oregano stalk, straw	straw, wood	wood waste		Wood: Bagasse	Various biomass	Ароом бе	Eucalyptus, oak pine	Contaminated wood	Biomass	Hardwood sawdust	Wood, ag and for wastes. Data for corn stover
Scale	Pilots 50kg/h or 500kg/h ?	Pilots 50kg/h or 500kg/h ?	2 tph biomass plant constructed (12000tpa)	Pilot 50kg/h	~	50tod (feed?)	3kg/h	100kg/h	~60kg/h	0.3g	200g	300g	1009		50-200ka/h		up to 200tpd	up to 200tpd	350t/d (14t/h)	?2-4t/h	5kg/h	250ka/h	2	Bench
Status			Commercialised, large scale for tyre also WEEE pyrolysis		commercialised	Pilot and small commercial	pilot	Large pilot	Pilot dormant	Lab	Bench scale	Bench scale	Bench scale	Large scale commercial for coal/shale /waste etc	pilot	_	Commercial	Commercial	Commercial	commercial	Pilot	?Demonstration constructed 1999		
Equipment Type	Tubular kiln, internal screw with steel balls	Tubular kiln, internal screw with steel balls	Tubular kiln, internal screw with steel balls	Tubular kiln, internal screw with steel balls	Adriated tube. vac	Screw pvrohser	Hot plate, rotating blades	Fluidised bed	entrained flow tube	Captive sample heated rapidly, no sweep gas?	Bubling FB	Bubling FB	Continuous FB	Twin screw pyrolyser	Rotating cone	>	Continuous deep FB	Continuous deep FB	Transported bed updraft	Bubling FB	Continuous FB	Continuous bubbling FB	Continuous shallow FB	Continuous shallow FB
Process	325-400	450-550	450-500	450-500	450	~	550-600	450-650	500	360-730	450-550	450 (470)	500	500	600		450-500	475-525	490		400-525 (475)		425	450-650
Pyrolysis Ture	Intermediate	Intermediate	Intermediate	Intermediate	Fast-vacuum	Fast?	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast
Source Ref	Hornung, 2007and 2008 (unpublished presentations)	Hornung, 2008	Sea Marconi, 2009	Mai et al, 2008	Bridgwater, Peacocke. 2000	Badger and Fransham, 2006	Bridgwater, Peacocke, 2000	Rocha et al, 2002	Bridgwater, Peacocke, 2000	loannidou et al, 2009	Kim et al, 2009	Mante, 2008	Yanik et al, 2007	Henrich, 2007	Bridgwater, Peacocke, 2000	Bridgwater, Peacocke, 2000	Dynamotive, 1999; Radlein and Kingston. 2007	Scott et al. 1999	Bridgwater, Peacocke, 2000; Ensyn website	Bridgwater, Peacocke, 2000	Bridgwater, Peacocke, 2000	Bridgwater, Peacocke, 2000	Piskorz et al, 1996 (RTI Patent)	Scott et al. 1985
Organisation	Aston, BioEnergy Research Group	Aston, BioEnergy Research Group	Sea Marconi, Italy	FZK	Pyrovac Inst. Inc.	ABRI Inc and Renewable Oil International	Uni of Aston	Uni of Campinas	GTRI	Uni of Thessaloniki / CPRI	Virginia Tech	Virginia Tech	FZK	FZK	BTG/ Uni of Twente	Waterloo/RTI/ Dynamotive	W aterloo/RTI/ Dynamotive	Waterloo/RTI/ Dvnamotive	Ensyn	Union Fenosa, Sp	BFH/IWC	Wellman Process Encineering	, ,	Uni of Waterloo
Process	Haloclean	Haloclean	Haloclean	Haloclean	Pvrovac	ABRI/ROI	Ablative plate	Bioware	GTRI	Lab-fast	Lab-fast	Lab-fast	Lab-fast	Lurgi	Rotating cone	RTI Process/ BioTherm Process	RTI Process/ BioTherm Process	RTI Process/ BioTherm Process	RTP (Rapid Thermal Processing)	Waterloo FPP	Waterloo/ Hamburg	Wellman	WFPP	WFPP

APPENDIX 2

Pyrolysis Process Information: Data Extracted for Selected Feeds

The following pages hold spreadsheet prints with data extracted from literature for the selected feedstocks: chicken litter, corn cob, corn stalk, miscanthus, pine, spruce, wheat straw, and willow. Data for the BEST Energies process using an undefined green-waste is also included.

Copies of the spreadsheet may be available from the author.

Pyrolysis F	Process Inform	ation: Data Ex	tracted for Sel	ected Feeds			Update:	24.06.09	(refere	nces	later)				
Peference					l	l			ondete	nck.					
Process	Source Ref	Organisation	Country	Туре	Source	Moisture	Volatiles	Fixed-C	C	H	N	0	Other info	Particle	Energy
														size	
										wt%	wt%				
									wt%	on	on	wt%			A 10.0
					Shenendo	wi% wei	wi% wei	wi% wei	onary	ury	ury	onury			IVIJ/Kg
l oh faat	Kim et al,	Virginia Tooh		Chickon littor	ah valley,	22.01			97.15		0.10	24.67	Ach 22 8%	#20	15.14
Labriasi	2003	Virginia recir	034	Chicken hitter	Shenendo	22.01			57.10	0.0	0.13	34.07	7311 22.0 %	inesii	13.14
l oh faat	Manta 2009	Vissiais Task		Chickon littor	ah valley,	0 10			20.15		6 40	26 56	Ash 23.53%wtmf; S 0.36;		14 70
Lau-iasi	Marile, 2000	Uni of	USA	Chicken iller	Virginia	0-10			29.10	4.1	0.42	30.30	010.02		14.79
l oh faat	Ioannidou et	Thessaloniki /	Granan	Corp oob	Orestiada,	7 57	04.97		49 77			50	Ach 9 06% ut		10.05
Lau-iasi	ai, 2009		Greece	Com cob	Greece	7.57	04.37		43.77	0.2		- 50	ASIT 0.00%WL	<1	10.20
		l Ini of													
	loannidou et	Thessaloniki /			Orestiada,										
Lab-slow	al, 2009	CPRI	Greece	Corn cob	Greece	7.57	84.37	•	43.77	6.2	2	50	Ash 8.06%wt	<1	18.25
	loannidou et	Thessaloniki /			Orestiada.										
Lab-fast	al, 2009	CPRI	Greece	Corn stalk	Greece	6.44	91.26	i	43.8	6.4		49.78	Ash 2.3%wt	<1	18.17
		Uni of													
Lab-slow	loannidou et al. 2009	Thessaloniki /	Greece	Corn stalk	Orestiada, Greece	6.44	91.26		43.8	6.4		49.78	Ash 2.3%wt	<1	18.17
	Birdgwater,														
Bio- Alternative	Peacocke, 2000	Bio-Alternative	Switzerland, Spain	Fir wood (and others)		10-15							Dried and comminuted		
	Birdgwater,	-													
Pyrovac	Peacocke, 2000	Pyrovac Inst. Inc.	Canada	Fir/Spruce bark		15							Dried and shredded		
. 1.0440	-300		Sanada			15							Shou and Shieuueu		
		BIT							ĺ						
	Zanzi et al,	Stockholm/	Sweeden/												
Lab-slow	2001	BAS, Sofia	Bulgaria	Miscanthus		6.6			48.9	4.6	0.4	46.7	Ash 2.69 %wtmf	1-3.2	
				Miscanthus or other											
Discussion	Rocha et al,	Uni of	Dressil	Elephant grass - not		10.10							Ash 110/t as day		
Bioware	2002	Campinas	Brazil	specified		10-12							ASN 11%Wt on dry	2-4	
				Miscanthus or other											
Bioware	2002	Campinas	Brazil	specified		10-12							Ash 11%wt on dry	2-4	
													Ash 2.3; S 0.06; Cl 0.074.	dia 6;	
Research, slow pv	Michel et al, 2006	Uni of Metz	France	Miscanthus pellets	Germany 2005	9.6	80		47.1	5.4	0.44	44.6	Cell 45; hemicell 30; lignin	length 10-30	17.744
- · · ·													Ash 2.3; S 0.06; Cl 0.074.		
Research, slow pv	Michel et al, 2006	Uni of Metz	France	Miscanthus straw	Germany 2005	9.6	80		47.1	5.4	0.44	44.6	Cell 45; hemicell 30; lignin		17.744
e.e., p)															
BTI															
Process/					Local										
BioTherm Process	Dynamotive, 1999	Waterloo/RTI/ Dvnamotive	Canada	Pine 85%, spruce	(Vancouve r)	5							Ash 0.25%wt	<1.2	
					.,										
Fixed bed	Ryu et al, 2007	Uni of Sheffield	шк	Pinewood		89	78.8	121	52	7		41		cube 20	17.8
	2007	Chichicia	0.1		Shenendo	0.0								0000 20	
Lab-fast	Mante, 2008	Virginia Tech	USA	Pinewood shavings	ah valley, Virginia	8-10			46.53	5.9	<0.5	42.31	Ash 1.95%wtmf; S <0.05; CI 180ppm	1	18.02
Lab labt	11110, 2000	riginia room	00.1	i monoca charmige	r ngi na	0.0			.0.00	0.0	1.0.0	.2.01			10.02
WEPP	Scott et al,	I Ini of Waterlor	Canada	Spruce sawdust		7							Ash 0.46 (%wtmf)	1	
			Ganada	oproce sumador										<u> </u>	
Lurai	Henrich 2007	F7K	Germany	Spruce wood		89							Ash 1%		16.2
	2	Aston,				0.0									
	Homuna	BioEnergy Besearch													
Haloclean	2008	Group/FZK	Germany/UK	Wheat straw pellets											
		RIT,													
Lab-slow	Zanzi et al, 2003	Stockholm/ BAS_Sofia	Sweeden/ Bulgaria	Wheat straw pellets		69			47	61	0.5	46.4	Ash 6.34 %wtmf	1-3.4	
200 0.011	2000	Aston,	Duiguna	rinda duan ponoto		0.0				0.1	0.0				
	Homuna et al	BioEnergy		Wheat straw											
Haloclean	2006	Group/FZK	Germany/UK	powdered											
		CMK Uni			Limberg										
	Lievens et al,	Hasselt,			contamina								Ash 3.4% wt on dry, CL-		
Lab-slow	2009	Belgium	Belgium	Willow (branches)	ted land	10			45.5	6.1	0.7	44	150ppm	<2	16
		CMK, Uni			Limberg,										
l ab clow	Lievens et al,	Hasselt,	Bolgium	Willow (locyce)	contamina	10			41.0	F 7		27.0	Ash 12% wt on dry, S 0.9;	2	
Lau-SIOW	2009	ມອາຊານແມ	Deigium	willow (leaves)	iteo iano	12			41.9	5./	2.1	37.8	0- 4000 ppm	<u><</u>	14
		ыт													
	Zanzi et al,	Stockholm/	Sweeden/												
Lab-slow	2002	BAS, Sofia	Bulgaria	Willow (salix)		7.3			48.8	6.2	1	43.4	Ash 0.75 %wtmf	1-3.3	
BEST	Downie et al,	BEST													
Eneraies	2007	Pyrolysis Inc	Australia	'Greenwaste'	1	38		1	45.6	5.3	0.15	38.4	Ash 3.5% on dry: S 0.06%.		

Durahusia	Due e e e e lucía um	ations Date Fo	wa sta d fan Calasta d	Frede				1
Pyrolysis I	Process Inform	hation: Data Ex	tracted for Selected	Feeds				
Reference			Process	1		· · ·	Conditions	
Process	Source Ref	Туре	Equipment	Scale	Temperature	Pressure	Heating	Residence time
							rate	
					°C	Мра	℃/min	?
	Kim et al.			Bench - 200a/h				
Lab-fast	2009	Fast	Bubling FB	here	450		fast	0.5-5
				Banah 200 250g/h				
Lab-fast	Mante, 2008	Fast	Bubling FB	here	469		fast	
			Captive sample					
Lab fact	loannidou et	Lab fact	heated rapidly, low	0.20	520	0.1	52°C/coo	2
Lauriasi	ai, 2003	Labiast	Fixed bed, sample	0.59	520	0.1	52 0/360	1
			blown onto				Contact	
	loannidou et		preneated beads, higher N2 sweep				with preheated	
Lab-slow	al, 2009	Lab slow	gas.	1.5g	500	0.1	beads	>15min
	looppidou ot		Captive sample					
Lab-fast	al. 2009	Lab fast	He sweep gas rate	0.3a	520	0.1	45°C/sec	?
			Fixed bed, sample				_	
			blown onto				Contact	
	loannidou et		higher N2 sweep				preheated	
Lab-slow	al, 2009	Lab slow	gas.	1.5g	500	0.1	beads	>15min
Bio-	Birdgwater, Peacocke	Conventional	Counter current					
Alternative	2000	carbonisation	updraft gasifier	50-2000kg/h	?	0.1		
	Birdgwater,							
Pyroyac	Peacocke, 2000	Fast-vacuum	Agitated tube vac	2880 kg/h dried	450	0.015		
i yiovac	2000	Lab slow	Agnated tabe, vae	(1070) 01011233	+00	0.010		
		pyrolysis with						
	Zanzi et al.	carbon activation by	furnace - packed					
Lab-slow	2001	steam	bed?	65g	550		25	60min
		F + + + + - + - + - + - + -						
	Bocha et al.	Fast with						
Bioware	2002	combustion	Fluidised bed	Large pilot 100kg/h	450-500			
		Foot with						
	Rocha et al.	partial						
Bioware	2002	combustion	Fluidised bed	Large pilot 100kg/h	550-650			
Posoareh	Michol ot al	Lab slow	Potony kilo undor					
slow py	2006	pyrolysis	argon	10-30g	500	0.1	5	? >60min
Research,	Michel et al,	Lab slow	Rotary kiln under	10-300	500	0.1	15	2 >60min
Slow py	2000	pyrolysis	argon	10-30g	300	0.1	13	: >00mm
RTI Process/								
BioTherm	Dynamotive,		Continuous deep	Now to 200tpd, but				
Process	1999	Fast	FB	data from ?pilot	472			
	Rvu et al.	Large lab slow	reactor, within	150-300g (up to				
Fixed bed	2007	pyrolysis	fumace.	1kg)	400	0.1	10	heat up + 60min
				Banah 200 250g/h				
Lab-fast	Mante, 2008	Fast	Bubling FB	here	421		fast	
WEDD	Scott et al,	Fact	Continuous shallow	5tpd demonstrator,	500		fact	0.5
WFFF	1999	Fasi	го	data ironi r	500		idal	0.5
			Lurgi-Ruhrgas twin-	20kg/h pilot, scaling				
Lurgi	Henrich, 2007	Fast	screw pyrolyser	up to 500kg/h	500	0.1	fast	few seconds
			Lurgi-Ruhrgas twin-	20kg/h pilot, scaling				
Lurgi	Henrich, 2007	Fast	screw pyrolyser	up to 500kg/h	500	0.1	fast	few seconds
			Rotary kiln internal					
	Hornung,	Intermediate	screw with steel	Pilot 50kg/h, 15t				
Haloclean	2008	pyrolysis	balls	processed	400	0.1	?	2 min
		Lab slow						
		carbon	Vertical tube in					
	Zanzi et al,	activation by	fumace - packed					aa
Lad-slow	2003	steam	Ded?	65g	550		25	60min
			Rotary kiln, internal					
Haladaan	Hornung et al,	Intermediate	screw with steel	Pilot 50kg/h, 15t	400	0.1	2	0 min
Haloclean	2006	pyroiysis	Dalis	processed	400	0.1	?	2 min
			Static horrizontal					
l ob olow	Lievens et al,	Lab slow	tube with silica heat	20	350		10	
Lau-siuw	2009	pyrolysis	camer	зy	350		10	
			Static horrizontal					
l ob olow	Lievens et al,	Lab slow	tube with silica heat	20	350		10	
Lau-310W	2003	Lab slow	Carrier	Jy	350		10	
		pyrolysis with						
	Zanzi et al	carbon activation by	vertical tube in fumace - packed					
Lab-slow	2002	steam	bed?	65g	650		25	60min
DECT								
DES I Energies	Downie et al,		Drum kiln agitatod	200kg/h dry basis	550./.20		5-10	

Pyrolysis F	Process Inform	ation: Data	a Extracted	for Select	d Feeds									
Reference		J	1	1	CI	har		1	1	Gas				
Process	Source Ref	Yield		Moisture	Volatiles	Fixed-C	Carbon%	Carbon	Energy,	Yield		Composition	Energy, HHV	
								Jield						
<u> </u>		%	?basis	%	%	%	%	%	MJ/kg	%	?basis		MJ/kg	MJ/Nm3
Lab-fast	Kim et al, 2009	40.63	%wt			ash				35.88	%wt			
			%wt drv								%wt dry			
Lab-fast	Mante, 2008	43.1	feed							13.6	feed			
	loannidou et		%wt as								%wt as	Vol% CO 51; H 32; CH4 9;		
Lab-tast	ai, 2009	31	ted (?)			СНО	67.62	20.832	24.27	26	ted (?)	CO2 9.	13	
Lab-slow	loannidou et al, 2009	37.31	%wt as fed (?)							16.16	%wt as fed (?)	Vol% CO2 51.69; CO 38.21; CH4 4.08; H2 1.82; +C2-C6	8.5	
	loannidou et		%wtas								%wtas	Vol% CO 46: H 28: CH4 10:		
Lab-fast	al, 2009	22	fed (?)			сно	62.18	13.6796	19.13	45	fed (?)	CO2 17.	15	
	loannidou et		%wt as								%wt as	Vol% CO2 52.36; CO 34.77;		
Lab-slow	al, 2009 Birdgwater,	32.67	fed (?)							14.47	fed (?)	CH4 5.49; H2 2.42; +C2-C6	8	
Bio- Alternative	Peacocke,	30	%wt dry		12-18				30			Vol%: H2 7.9; CO 16.3; CO2 13 2: N2 48 4: O and H-C 14 7		3855
	Birdgwater,		%wt dru								%wt dn/	Vol%: H2 6.6; CH4 10.0; CO		
Pyrovac	2000	34	wood		20.3	72.1		24.514	30.4	11	wood	MeOH 0.4; Others 3.1	10.9	
	Zanzi et al,											Vol% N2 free: CO2 52.9; CO		
Lab-slow	2001	24	%wt maf	7.5						10	%wt maf	27.9; H2 10; CH4 7.6; C-2 1.6.		
	Basha at al		9/ut do											
Bioware	2002	12-15	basis			40-45	52.5	7.0875	20-25	10-12	%wt			
Bioware	Rocha et al, 2002	<10	%wt dry basis			CHON ash	52.5	5.25		15-20	%wt			
Research	Michel et al		%wt fraction of								%wt fraction of			
slow py	2006	23	total						29.083	51	total	CO2, CO, CH4 not quantified		
Research,	Michel et al,		%wt fraction of								%wt fraction of			
slow py	2006	28	total							46	total	CO2, CO, CH4 not quantified		
RTI														
Process/ BioTherm	Dynamotive		%wt as								%wtas			
Process	1999	20	fed							9	fed			
	Ryu et al,		%mass								vield by	CO2, CO, CH4, H2, C3H8 not		
Fixed bed	2007	30	lyield		35	63	79.8	23.94	32	34	diff	quantified		
Lab-fast	Mante, 2008	22.4	%wt dry feed							14.88	%wt dry feed			
	Scott et al.													
WFPP	1999	12.2	%wt maf							7.8	%wt maf			
Lurgi	Henrich, 2007 Birdgwater,	17	17							13	?	CO>CO2>CH4>H2~C2-C5		
Pyrovac	Peacocke, 2000	24	%wt dry wood							12	%wt dry wood			
	Demirbas,					CHON		05 400						
Lab - slow	2001	32.0				asn		25.102	29.34	20.2	1	na	na	
	Yanik et al,													
Lab-fast RTI	2007	20	%wt						19 kcal/kg	39	%wt			
Process/ BioTherm	Scott et al.		%wt moisture								%wt moisture			
Process	1999	30.2	free feed							21.1	free feed			
Process/	Radlein and													
BIO I nerm Process	ningston, 2007	18	%wt							24	%wt			
	Scott et al,													
WFPP	1999	24.5	%wt maf							17.8	%wt maf			
Lurai	Henrich 2007	28	?							18	?	CO2>CO>CH4>C2-C5>H2		
											-			
	Hornung,													
Haloclean	2008	35	/ <u>/</u>						25	20	?			
												Vol% N2 free: CO2 55.4; CO		
l ab-slow	Zanzi et al, 2003	25	%wt maf	2.5						12	%wt maf	21.9; H2 10; CH4 10.9; C-2 1.8.		
listeriere	Hornung et al,													
Haloclean	2006	33.5	/ <u>/</u>						25	31.9	?			
	Lievens et al,		%wt as											
Lab-slow	2009	49.1	fed							<1				
	Lievens et al		% wat an											
Lab-slow	2009	54	fed							<1				
	Zanzi et al.											Vol% N2 free: CO2 18.5; CO 33.1; H2 43.1; CH4 4.7; C-2		
Lab-slow	2002	12	%wt maf	2.1						49	%wt maf	0.6.		
BEST Energies	Downie et al, 2007	40	%wt dry feed			CHNO- Ash	72 3	28.92				Vol%: N2 38; CO 20; CO2 16; H2 16; CH4 8.5: C-2 <1		

Pvrolvsis i	Process Inform	ation: Data	a Extracted	for Select	ed Feeds		I
. .							
Reference	Course Dof		Water	Liquid	Moieture	Enormy	Notes
Process	Source Her		Yield		Moisture	HHV	
		%	%	?basis	%	MJ/kg	
	Kim at al						I Incertain yield basis, might be as fed, as liquid yield is just condeported as
Lab-fast	2009	23.49	included	%wt		27.49	far as can tell. Mante specifies yields on dry basyis though.
Lob fact	Monto 2009	42.25	included	%wt dry		20.7	
Lao-last	Marite, 2008	43.23	Included	1660		29.7	Neither of these set-ups seem very representative of large scale fast or
	loannidou et			%wt as			slow processes. This 'fast' process seems more like a slow for yield
Lab-fast	al, 2009	30	included	fed (?)			distribution. 520 result picked as 360/380 look anomalous.
							Neither of these set-ups seem very representative of large scale fast or
l ob olow	Ioannidou et	40.00	included	%wt as			slow processes. This 'slow' process has anomalous char yield pattern,
Lausiuw	ai, 2009	40.22	Included				Neither of these set-ups seem very representative of large scale fast or
	loannidou et			%wt as			slow processes. This 'fast' process seems more like a slow for yield
Lab-fast	al, 2009	20	included	fed (?)			distribution. 520 result picked as 360/380 look anomalous.
							Neither of these set-ups seem very representative of large scale fast or
l ob olow	Ioannidou et	40.00	included	%wt as			slow processes. This 'slow' process has anomalous char yield pattern,
Lao-slow	ai, 2009 Birdowater	42.22	inciuded	1ea (?)			nighest at 600 (40%). Sou picked as more data given for this.
Bio-	Peacocke,			%wt on			Gas burnt 'in a boiler' or after drying in an engine. Oil used in a hospital
Alternative	2000	15-20		feed	4.5	22.2	boiler. Char desired product.
	Peacocke,			%wt dry			some biooil -> process heat; biooil -> CC gas turbine 8.5MWe; flue gas ->
Pyrovac	2000	35	20	wood	23	23	drying
	Zanzi et al,						
Lab-slow	2001	66		%wt maf			Yield basis probably % wt mf not maf - otherwise doesn't balance
	Rocha et al,						
Bioware	2002						
	Rocha et al,						
Bioware	2002	70-75	inc	%wt			
Research	Michel et al			%WI fraction of			Char yields higher for slower heating higher for lower final temp, higher for
slow py	2006	26	included	total			straw vs pellets - not expected, thin explanation.
Deserve	Minh at at at			%wt			Dense since any initial of violate with booking and an and sharing the state
Hesearch,	MICHEI ET AI,	26	included	total			Paper gives variation of yields with neating rate and physical form, but data natchy
51011 pj	2000	20	Included	lota			patony.
							Data picked from charts, other data for T=459,460,487,505 - good set for
RII Process/							variability. Energy data: total heat requirement 2.5MJ/kg, when gases
BioTherm	Dynamotive,			%wt as			'six barrels per day plant' scale. No figures for drying requirement. The gas
Process	1999	71		fed			input said to be 5% of 'total CV' of oil yield at max yield.
	Dury at al			e/ maaa			Paper gives profiles for yields at five final temperatures, also for GCV,
Fixed bed	2007	35	included	yield			approximate.
l ah-fast	Mante 2008	62.69	included	%wt dry feed		25.64	
Luo luot		02.00	Incidada	1000		20.01	
	Scott et al,						
WFPP	1999	66.5	11.6	%wt mat			
Lurgi	Henrich, 2007	70	included	?			Figures approx, taken off charts, to search for published data
	Birdgwater, Peacocke			%wt drv			
Pyrovac	2000	47	17	wood			
	Demirbas						Paper gives good profiles for yields at range of seven final temperatures
Lab - slow	2001	47.2		?			but not very representative technique. Five other feeds tested.
	Vanik et al						
Lab-fast	2007	35	6	%wt	4.68		
RTI							
Process/ BioTherm	Scott et al			%W[moisture			Scott paper dives you little data for BTI process, mostly for WEPP
Process	1999	48.7	?	free feed			comparison. Discussion of RTI mostly on easier design requirements.
RTI Decenaria	De alle in an al						
BioTherm	Kingston						
Process	2007	58		%wt		16.5	
	0						
WEPP	1999	44.7	8.1	%wt maf			however, char 35-40%, gas 15-17, total liquid 43-44. Data for two runs.
Lurai	Honrich 2007	54	included				Figures approx, taken off shorts, to essent for sublished data
Corgi	nemicit, 2007	J.,	Included				rigures approx; taken on charts, to search for published data
Halaalaan	Hornung,	45	included			21	Data in presentations very patchy. Hoping for more detail from Horning, but
Haluciean	2008	40	Included	ſ		21	not antived yet.
	Zonzi et el						
Lab-slow	2003	63		%wt maf			Yield basis probably % wt mf not maf - otherwise doesn't balance
	Hornung et al						Data in presentations very patchy. Honing for more detail from I I
Haloclean	2006	34.6	included	?		21	not arrived yet.
							Low temp used to keep heavy metals in the char, but possibly not very
				or			charred at 350 °C. High char yield includes ash, but if expressed on dry
Lab-slow	2009	18	22.3	fed		23-24	usual profile of falling yield of char - data on charts.
							Low temp used to keep heavy metals in the char, but possibly not very
	Lievens et al			% wat oo			charred at 350 °C. High char yield includes ash, but if expressed on dry
Lab-slow	2009	14.7	19.2	fed		20-25	usual profile of falling yield of char - data on charts.
	Zanzi et al.						
Lab-slow	2002	39		%wt maf			Yield basis probably % wt mf not maf - otherwise doesn't balance
BEST	Downie et sl						no oil product so balance of yield should be gas - 60% by wt. And from
Energies	2007	0	1				able to deduce gas quantity and energy from analysis.

References for Appendices 1 and 2

Antal, M.J., Grønli, M. (2003) The art, science and technology of charcoal production. *Industrial and Engineering Chemistry Research.* **42**, (8), 1619-1640.

Antal, M.J., Mochidzuki, K., Paredes, L.S., (2003). Flash carbonisation of biomass. *Industrial and Engineering Chemistry Research.* **42**, 3690-3699.

Badger, P.C., Fransham, P.B. (2006). *Method and system for accomplishing flash or fast pyrolysis with carbonaceous materials.* US Patent Application No.: 11/480915.

BEST Energies Inc. (2009). BEST Energies web site BEST Energies Inc., Wisconsin, USA. <u>http://www.bestenergies.com/companies/bestpyrolysis.html</u> 12.08.09

Bridgwater, A.V., Peacocke, G.V.C. (2000). Fast Pyrolysis Processes for Biomass. *Renewable and Sustainable Energy Reviews.* **4**, 1-73.

Day, D., Evans, R.J., Lee, J.W., Reicosky, D. (2005). Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. *Energy*. **30**, 2558-2579.

Demirbas, A. (2001). Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. *Energy Conversion and Management.* **42**, 1229-1238.

Domac, J., Trossero, M., Siemons, R.V. (2008). *Industrial Charcoal Production*. North-West Croatia Regional Energy Agency, Zagreb.

http://www.drveniuglien.hr/assets/files/pdf/FAO Industrial%20charcoal%20production.pdf 15.08.09

Dynamotive Energy Systems Corporation. (1999). BioTherm[™] - a system for continuous quality, fast pyrolysis biooil. *Fourth Biomass Conference of the Americas.* http://www.biooil.ru/docs/1999OaklandBiomassPaper.pdf 15.08.09

Henrich, E. (2007). The status of the FZK concept of biomass gasification. *The status of the FZK concept of biomass gasification*. Forschungszentrum Karlsruhe GmbH. Karlsruhe, Germany.

Honsbein, D. (2005). Examples of Biomass Utilisation in South Africa – Application of Slow Pyrolysis *PyNe Newsletter.* **21**, 2-4.

http://www.pyne.co.uk/Resources/user/PYNE%20Newsletters/PyNews%2021.pdf 15.08.09

Hornung, A., Apfelbacher, W., Koch, W., Linek, A., Sagi, S., Schoner, J., Stohr, J., Seifert, H., Tumiatti, V., Lenzi, F. (2006). Thermo-chemical conversion of straw - Haloclean intermediate pyrolysis *17th International Symposium on Analytical and Applied Pyrolysis, 2006.*

Hornung, A. (2008). *Fast, intermediate or slow pyrolysis for fuels production, power generation from various biomasses or as pre-conditioning unit for gasifiers.* Presentation to Imperial College. Aston University. Birmingham, UK. http://www3.imperial.ac.uk/pls/portallive/docs/1/44315696.PDF 15.08.09

loannidou, O., Zabaniotou, A., Antonakou, E.V., Papazisi, K.M., Lappas, A.A., Athanassiou, C. (2009). Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. *Renewable and Sustainable Energy Reviews.* **13**, 750-762.

Kammen, D.M., Lew, D.J. (2005). *Review of Technologies for the Production and Use of Charcoal.* National Renewable Energy Laboratory, Golden, Colorado, USA.

Karagoz, S. (2009). Energy production from the pyrolysis of waste biomasses. *International Journal of Energy Research.* **33**, 576-581.

Kim, S.S., Agblevor, F.A., Lim, J. (2009). Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. *Journal of Industrial and Engineering Chemistry*. **15**, 247-252.

Lievens, C., Carleer, R., Cornelissen, T., Yperman, J. (2009). Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. *Fuel.* **88**, 1417-1425.

Mai, R., Liebold, H., Siefert, H. (2008). Hot gas filtration and Haloclean ® process operation experience and scale-up. 7th International Symposium on Gas Cleaning at High Temperatures. http://www.fzk.de/fzk/groups/itc-tab/documents/internetdokument/id_067802.pdf_15.08.09

Mante, N.O.D. (2008). Influence of Wood on the Pyrolysis of Poultry Litter. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA. <u>http://scholar.lib.vt.edu/theses/available/etd-09082008-120932/unrestricted/Thesis-Pyrolysis.pdf</u> 23.06.09.

Michel, R., Mischler, N., Azambre, B., Finqueneisel, G., Machnikowski, J., Rutowski, P., Zimny, T., Weber, J.V. (2006). Miscanthus × Giganteus straw and pellets as sustainable fuels and raw material for activated carbon. *Environmental Chemistry Letters.* **4**, 185-189.

Okimori, Y., Ogawa, M., Takahashi, F. (2003). Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in south Sumatra, Indonesia. *Mitigation and Adaptation Strategies for Global Change*. **8**, 261-280.

Piskorz, J., Majerski, P., Radlein, D. (1999). Energy Efficient Liquefaction of Biomaterials by Thermolysis. US Patent No.: 5728271.

Pro-Natura. (2008). Fighting climate change with green charcoal and increasing agricultural productivity. Newsletter December 2008. Pro-Natura, Paris. http://www.pronatura.org/archives/200812 GreenCharcoal en.pdf 15.08.09

Radlein, D., Kingston, A. (2007). The Potential role of Agrichar in the Commercialization of Dynamotive's Fast Pyrolysis Process. *International Agrichar Initiative Conference, 2007*. http://www.biochar-international.org/images/Agrichar May2, 2007 Presentation-Radlein.pdf 15.08.09

Rocha, J.D., Olivares Gómez, E., Mesa Pérez, J.M., Cortez, L.A.B., Seye, O., Brossard González, L.E. (2002). The demonstration fast pyrolysis plant to biomass conversion in Brazil. *World Renewable Energy Congress VII.*

Ryu, C., Sharifi, C.N., Swithenbank, J. (2007). Waste pyrolysis and generation of storable char. *International Journal of Energy Research.* **31**, 177-191.

Scott, D.S., Piskorz, J., Radlein, D. (1985). Liquid Products from the Continuous Flash Pyrolysis of Biomass. *Industrial and Engineering Chemistry Process Design and Development.* **24**, 581-588.

Scott, D.S., Majerski, P., Piskorz, J., Radlein, D. (1999). A second look at fast pyrolysis of biomass - the RTI process. *Journal of Analytical and Applied Pyrolysis.* **51**, 23-37.

Sea Marconi. (2009). *Haloclean BioEnergy - Principles of Operation*. Sea Marconi web site. <u>http://www.seamarconi.com/modules.php?name=News&file=article&sid=139</u>15.08.09

Someus, G.E. (1993). *Method and apparatus for refinement of organic material.* US Patent No.: 5194069.

Toole, A.W., Lane, P.H., Arbogast, C., Smith, W.R., Peter, R., Locke, E.G., Beglinger, E, Erickson, E.C.O. (1961). *Charcoal Production, Marketing and Use.* Forest Service, US Department of Agriculture. Report No.: 2213 <u>http://www.fpl.fs.fed.us/documnts/fplr/fplr2213.pdf</u> 15.08.09

Yanik, J., Kornmayer, C., Saglam, M., Yuksel, M. (2007). Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products. *Fuel Processing Technology.* **88**, 942-947.

Yeboah, Y.D., Bota, K.B., Wang, Z., Gronich, S., Evans, R. (2003). *Hydrogen from Biomass for Urban Transportation.* FY 2003 Progress Report. National Renewable Energy Laboratory, Golden, Colorado, USA. <u>http://www.hydrogen.energy.gov/pdfs/progress04/va3_yeboah.pdf</u> 15.08.09

Zabaniotou, A.A., Karabelas, A.J. (1999). The Evritania (Greece) demonstration plant of biomass pyrolysis. *Biomass and Bioenergy*. **16**, 431-445.

Zanzi, R., Bai, X., Capdevila, P., Bjornbom, E. (2001). Pyrolysis of biomass in the presence of steam for preparation of activated carbon, liquid and gaseous products. *6th World Congress of Chemical Engineering*, *2001*.